JAYDEE'S CE CLASSICAL TOURNAMENT MOCK EXAM

Rules:

1. All commented "pasali" will be registered.
2. The difficulty will be Normal, Lumberjacks, Hardcore, and Extreme.
3. Point system as follows:

Normal : 1 pt for correct ones
Lumberjacks: 2 pts for correct and -1 for incorrect
Hardcore: 3 pts for correct and -2 for incorrect
Extreme: 5 pts for correct, -3 for incorrect and -1 for no answer
4. All answers should be submitted including to the photos of your solutions to Civil Engineering Board Exam Problems - Philippines Facebook page. No solution, considered as no answer.

NORMAL ROUND

1. CE LAWS

According to Republic Act 1582 , known as Civil Engineering Law, a roster showing the names and places of all businesses of all registered civil engineers shall be prepared by the Commissioner of PRC periodically but at least \qquad _.
2. FLUID MECHANICS

A crane is used to lower the weights into the sea (density $=1025 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$ for an underwater construction project. Determine the tension in the rope of the crane due to rectangular 0.4×0.4 x 3 m concrete block when completely immersed in water.
3. ENGINEERING MATHEMATICS (Incomplete answers are incorrect)

Solve for $\mathrm{x}:|3 \mathrm{x}-5|=7$
4. STRUCTURAL ENGINEERING (Incomplete answers are incorrect)

Determine the magnitude and direction measured counterclockwise from the positive x axis of the resultant force of the three forces acting on the ring A as shown. Take F1 $=500 \mathrm{~N}$ and $\theta=20^{\circ}$.

5. ENGINEERING ECONOMY

A loan of $P 5,000$ is made for a period of 15 months, at a simple interest rate of 15%. What future amount is due at the end of the loan period?

LUMBERJACKS ROUND

1. STRUCTURAL STEEL

A double angle tension member, $100 \times 100 \times 8 \mathrm{~mm}$ is subjected to a tensile load $\mathrm{P}=210 \mathrm{kN}$. The Diagonal member is on slope $2 \mathrm{~V}: \mathrm{H}$ and is connected to the supporting beam by a wide tee:
$\mathrm{S} 1=38 \mathrm{~mm}, \mathrm{~S} 2=75 \mathrm{~mm}, \mathrm{~S} 3=100, \mathrm{t} 1 \mathrm{t} 2$ and $\mathrm{t} 3=16 \mathrm{~mm}$
Allowable strength and stresses:
Yield strength, Fy = 248 MPa , Ultimate strength Fu = 400 MPa , Bolt shear strength Ft $=150 \mathrm{MPa}$, Bolt tensile stress, $\mathrm{Ft}=195 \mathrm{MPa}$, Bolt bearing stress $=\mathrm{Fp}=1.2 \mathrm{Fu}$
Determine the diameter of the four bolts in tension connecting the wide tee to the flange of the supporting beam.

2. ENGINEERING MATHEMATICS

Find the integral:

$$
\int \frac{\cos ^{3} x}{1-\sin x}
$$

3. TRANSPORTATION ENGINEERING

Which of the following is/are one of the types of environmental impacts of highway development?
a. Temporary
b. direct and indirect
d. right of way
e. cumulative

4. GEOTECHNICAL ENGINEERING

A vane 11.25 cm long and 7.5 cm in diameter was pressed into soft clay at the bottom of a borehole. Torque was applied to cause failure of soil. The shear strength of clay was found to be 37 kPa . Determine the torque applied.
5. REINFORCED CONCRETE

A cantilever beam $300 \times 400 \mathrm{~mm}$ deep is 3 m long is designed with tension reinforcement only.
Superimposed dead load $=12 \mathrm{kN} / \mathrm{m}$
Live load at free end $=20 \mathrm{kN}$
Concrete unit weight $=23.5 \mathrm{kN} / \mathrm{m}^{\wedge} 3$
Concrete $\mathrm{f}^{\prime} \mathrm{c}=30 \mathrm{MPa}$
Steel fy $=415 \mathrm{MPa}$
Assume 70 mm concrete cover to the centroid of the tension reinforcement. Use 2001 NSCP.
Calculate the Ultimate strength in kN m of the section if the tension reinforcement consists of 4 $25 \mathrm{~mm} \varnothing$.

HARDCORE ROUND

1. STEEL DESIGN

Compute the available strength of the compression member as shown in the figure. Two angles 5 $x 3 \times 1 / 2$ are oriented with long legs back to back ($2 L 5 \times 3 \times 2$ LLBB) and separated by $3 / 8$ inch. The effective length KL is 16 feet and there are three fully tightened intermediate connectors. A36 is used and rely to LFRD.

2. GEOMETRY

In an acute triangle $A B C$, point H is the intersection of altitude $C E$ at $A B$ and altitude $B D$ to $A C$. A circle with $D E$ as its diameter intersects $A B$ and $A C$ at points F and G, respectively. $F G$ and $A H$ intersect at point K. If $B C=25, B D=20$ and $B E=7$, find the length of $A K$.
3. HYDRAULICS

Water enters a rotating lawn sprinkler through its base at the steady rate of $1000 \mathrm{ml} / \mathrm{s}$ as shown. The exit area of each of the two nozzles is $30 \mathrm{~mm}^{\wedge} 2$ and the flow leaving each nozzle is in the tangential direction. The radius from the axis of rotation to the centerline of each nozzle is 200 mm . Determine the speed of the sprinkler if no resisting torque is applied.
4. SURVEYING

To determine the difference in level between two stations A and B, 4996.8 m apart, the reciprocal trigonometric levelling was performed and the readings in Table 3.15, were obtained. Assuming the mean earth's radius as 6366.20 km and the coefficient of refraction as 0.071 for both sets of observations, compute the observed value of the vertical angle of A from B and the difference in level between A and B.

Instrument at	Height of Instrument (m)	Target at	Height of Target (m)	Mean vertical angle
A	1.6	B	5.5	$+1^{\circ} 15^{\prime} 32^{\prime \prime}$
B	1.5	A	2.5	-

5. GEOTECHNICAL ENGINEERING

Following are the results of the standard penetration test in sand. Determine the corrected standard penetration number at 7.5 meters.

Depth, $\boldsymbol{z}(\mathbf{m})$	\boldsymbol{N}_{60}
1.5	8
3.0	7
4.5	12
6.0	14
7.5	13

EXTREME ROUND

1. TRANSPORTATION ENGINEERING (Incomplete answers are incorrect)

A 5000 lb load is places on two tires, which are then locked in place. A force of 2400 lb is necessary to cause the trailer to move at 20 mph . Determine the value of the skid number. If treaded tires were used , characterize the pavement type.

2. PRESTRESSED CONCRETE

A prestressed I beam of one of the beams of the proposed Robinsons Galleria is prestressed with a bonded tendons having an area of Aps $=2350 \mathrm{~mm}^{\wedge} 2$ and the effective prestress after losses fse $=1100 \mathrm{MPa}$. , $\mathrm{fpu}=1860 \mathrm{MPa}$, $\mathrm{fc}^{\prime}=48 \mathrm{MPa}$. The beam is subjected to a dead load moment of 430 kN m and live load moment of 1000 kN m . The centroid of all the prestressing steel placed at a distance of 115 mm above the bottom of the beam as shown. Determine the ultimate moment capacity.

3. FOUNDATION ENGINEERING (Careful, not all parameters is used)

For the drilled shaft with bell given,
Thickness of the active zone $Z=9 \mathrm{~m}$
Dead load $=1500 \mathrm{kN}$, live load $=0$, Diameter of the shaft $=1 \mathrm{~m}$
Zero swell pressure for the clay in the active zone $=600 \mathrm{kPa}$
Average angle of plinth soil friction $=20^{\circ}$
Average undrained cohesion of the clay around the bell $=150 \mathrm{kPa}$
If an additional requirement is that the factor of safety against the uplift is at least 4 with the dead load on , what should be the diameter of the bell?
4. STRUCTURAL ANALYSIS (Incomplete answers are incorrect)

Determine the force in members BE, DF, and BC of the space truss and state if the members are in tension or compression as shown.

5. PROBABILITY AND STATISTICS

What is the probability that a ten digit number that is a number chosen at random between 1,000,000,000 and 9,999,999,999 inclusive will have ten different digits? Answer in 5 significant figures.

N1 Answer - Once a Year

N2 Solution © Cengel

Analysis (a) Consider the free-body diagram of the concrete block. The forces acting on the concrete block in air are its weight and the upward pull action (tension) by the rope. These two forces must balance each other, and thus the tension in the rope must be equal to the weight of the block:

$$
\begin{aligned}
V & =(0.4 \mathrm{~m})(0.4 \mathrm{~m})(3 \mathrm{~m})=0.48 \mathrm{~m}^{3} \\
F_{T, \text { air }} & =W=\rho_{\text {concrete }} g V \\
& =\left(2300 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\left(0.48 \mathrm{~m}^{3}\right)\left(\frac{1 \mathrm{kN}}{1000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}\right)=10.8 \mathrm{kN}
\end{aligned}
$$

(b) When the block is immersed in water, there is the additional force of buoyancy acting upward. The force balance in this case gives

$$
\begin{aligned}
F_{B} & =\rho_{f} g V=\left(1025 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\left(0.48 \mathrm{~m}^{3}\right)\left(\frac{1 \mathrm{kN}}{1000 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}\right)=4.8 \mathrm{kN} \\
F_{T, \text { wser }} & =W-F_{B}=10.8-4.8=6.0 \mathrm{kN}
\end{aligned}
$$

N3 Solution © Torculas

$|3 x-5|=7$.

Solution:

First rewrite $|3 x-5|=7$ without absolute value:

$$
\begin{array}{ccr}
3 x-5=7 & \text { or } & 3 x-5=-7 \\
x=4 & \text { or } & x=-2 / 3
\end{array}
$$

The solution set is $\left\{-\frac{2}{3}, 4\right\}$.

N4 © Hibbeler

Scalar Notation : Suming the force components algebrically, we have

$$
\begin{aligned}
\stackrel{+}{\rightarrow} F_{R_{t}}=\Sigma F_{z} ; \quad F_{R_{t}} & =500 \sin 20^{\circ}+400 \cos 30^{\circ}-600\left(\frac{4}{5}\right) \\
& =37.42 \mathrm{~N} \rightarrow \\
+\uparrow F_{R_{r}}=\Sigma F_{y} ; \quad F_{R_{r}} & =500 \cos 20^{\circ}+400 \sin 30^{\circ}+600\left(\frac{3}{5}\right) \\
& =1029.8 \mathrm{~N} \uparrow
\end{aligned}
$$

The magnitude of the resultant force F_{R} is

$$
F_{R}=\sqrt{F_{R_{2}}^{2}+F_{R_{p}}^{2}}=\sqrt{37.42^{2}+1029.8^{2}}=1030.5 \mathrm{~N}=1.03 \mathrm{kN} \quad \text { Ans }
$$

The directional angle θ measured counterclockwise from positive \boldsymbol{x} axis is

$$
\theta=\tan ^{-1} \frac{F_{R_{2}}}{F_{R_{2}}}=\tan ^{-1}\left(\frac{1029.8}{37.42}\right)=87.9^{\circ}
$$

Ans

N5 Solution © Tiong

$$
\begin{aligned}
& \mathrm{F}=\mathrm{P}(1+\mathrm{in}) \\
& \mathrm{F}=5000\left[1+0.15\left(\frac{15}{12}\right)\right] \\
& \mathrm{F}=5,937.50
\end{aligned}
$$

L1 Solution © Besavilla

$\frac{210}{\sqrt{5}}=\frac{F_{1}}{2}$	Diameter of the four bolts in tension connecting the wide tee to the flange of the supporting beam			
$F_{1}=187.83 \mathrm{kN}$	$F_{\mathrm{s}}=\tau \mathrm{A}$,	$\frac{210}{\sqrt{5}}=\frac{F_{1}}{1}$	$\mathrm{~d}=14910=150\left(\frac{\pi}{4}\right)\left(\mathrm{d}^{2}\right)(4) \mathrm{mm}$
:---	:---			
$F_{\mathrm{h}}=93.91 \mathrm{kN}$	Used $=16 \mathrm{mmg}$ (one of the choices)			

L2 Solution © Schaum's
$\int \frac{\cos ^{3} x}{1-\sin x}=\frac{\cos ^{3} x}{1-\sin x} \cdot \frac{1+\sin x}{1+\sin x}=\frac{\cos ^{3} x(1+\sin x)}{\cos ^{2} x}=\cos x(1+\sin x)=\cos x+\cos x \sin x$.
$\int \frac{\cos ^{3} x}{1-\sin x} d x=\int \cos x d x+\int \cos x \sin x d x=\sin x+\frac{1}{2} \sin ^{2} x+C$.

L3 Answer - BCE © Handbook of Highway Engineering
L4 Solution © Murthy
Torque, $T=c_{u}\left[2 \pi r^{2}(L+0.67 r)\right]$ where $c_{u}=37 \mathrm{kN} / \mathrm{m}^{2}=3.7 \mathrm{~N} / \mathrm{cm}^{2}$

$$
=3.7\left[2 \times 3.14 \times(3.75)^{2}(11.25+0.67 \times 3.75)\right]=4500 \mathrm{~N}-\mathrm{cm}
$$

L5 Solution © Besavilla

$\mathrm{Mu}=0.9(225.5)=202.95 \mathrm{kN} \mathrm{m}$

H1 Solution © Segui

$$
\begin{aligned}
& \frac{K_{x} L}{r_{x}}=\frac{16(12)}{1.58}=121.5 \\
& F_{e}=\frac{\pi^{2} E}{(K L / r)^{2}}=\frac{\pi^{2}(29,000)}{(121.5)^{2}}=19.39 \mathrm{ksi} \\
& 4.71 \sqrt{\frac{E}{F_{y}}}=4.71 \sqrt{\frac{29,000}{36}}=134
\end{aligned}
$$

Since $\frac{K L}{r}<4.71 \sqrt{\frac{E}{F}}$, use AISC Equation E3-2.

$$
F_{c r}=0.658^{\left(F_{i} / F_{)}\right)} F_{y}=0.658^{(36 / 1939)}(36)=16.55 \mathrm{ksi}
$$

The nominal strength is

$$
P_{n}=F_{c r} A_{g}=16.55(7.50)=124.1 \mathrm{kips}
$$

To determine the flexural-torsional buckling strength for the y-axis, use the modified slenderness ratio, which is based on the spacing of the connectors. The unmodified slenderness ratio is

$$
\left(\frac{K L}{r}\right)_{0}=\frac{K L}{r_{y}}=\frac{16(12)}{1.24}=154.8
$$

The spacing of the connectors is

$$
a=\frac{16(12)}{4 \text { spaces }}=48 \mathrm{in} .
$$

Then, from Equation 4.14,

$$
\begin{aligned}
& \frac{K a}{r}=\frac{K a}{r}=\frac{48}{\Omega K 42}=74.77<0.75(154.8)=116.1 \quad(\mathrm{OK}) \\
& \frac{K a}{r_{i}}=\frac{K a}{r_{z}}=\frac{48}{0.642}=74.77<0.75(154.8)=116.1 \quad(\mathrm{OK})
\end{aligned}
$$

Compute the modified slenderness ratio, $(K L / r)_{m}$:

$$
\begin{aligned}
& \frac{a}{n^{\prime}}=\frac{48}{0.612}=74.77>40 \quad \therefore \text { Use AISC Equation E6-2b } \\
& \frac{K_{i} a}{r}=\frac{0.5(48)}{0.642}=37.38 \\
& \left(\frac{K L}{r}\right)_{m}=\sqrt{\left(\frac{K L}{r}\right)_{o}^{2}+\left(\frac{K_{i} a}{n_{i}}\right)^{2}}=\sqrt{\left.(154.8)^{2}+(37.38)^{2}\right)}=159.2
\end{aligned}
$$

This value should be used in place of $K L / r_{y}$ for the computation of $F_{c r y}$:

$$
\begin{gathered}
F_{e}=\frac{\pi^{2} E}{(K L / r)^{2}}=\frac{\pi^{2}(29,000)}{(159.2)^{2}}=11.29 \mathrm{ksi} \\
\text { Since } \frac{K L}{r}>4.71 \sqrt{\frac{E}{F_{y}}}=134, \\
F_{c y}=0.877 F_{e}=0.877(11.29)=9.901 \mathrm{ksi}
\end{gathered}
$$

From AISC Equation E4-3,

$$
\begin{aligned}
F_{c z} & =\frac{G J}{A_{g} \bar{r}_{o}^{2}}=\frac{11,200(2 \times 0.322)}{7.50(2.51)^{2}}=152.6 \mathrm{ksi} \\
F_{c y}+F_{c z z} & =9.901+152.6=162.5 \mathrm{ksi}
\end{aligned}
$$

$$
\begin{aligned}
F_{c r} & =\left(\frac{F_{c y}+F_{c z}}{2 H}\right)\left[1-\sqrt{1-\frac{4 F_{c y} F_{c z} H}{\left(F_{c y}+F_{c z z}\right)^{2}}}\right] \\
& =\frac{162.5}{2(0.646)}\left[1-\sqrt{1-\frac{4(9.832)(152.6)(0.646)}{(162.5)^{2}}}\right]=9.599 \mathrm{ksi}
\end{aligned}
$$

The nominal strength is

$$
P_{n}=F_{c r} A_{g}=9.599(7.50)=71.99 \mathrm{kips}
$$

Therefore the flexural-torsional buckling strength controls.
The design strength is

$$
\phi_{c} P_{n}=0.90(71.99)=64.8 \mathrm{kips}
$$

H2 Solution © Hainan Olympiad

Solution We know that $\angle A D B=\angle A E C=90^{\circ}$, therefore

$$
\triangle A D B \backsim \triangle A E C,
$$

and

$$
\begin{equation*}
\frac{A D}{A E}=\frac{B D}{C E}=\frac{A B}{A C} \tag{1}
\end{equation*}
$$

But $B C=25, B D=20$, and $B E=7,50 C D=15$, and $C E=24$.
From (1), we obtain

$$
\left\{\begin{array}{l}
\frac{A D}{A E}=\frac{5}{6}, \\
\frac{A E+7}{A D+15}=\frac{5}{6},
\end{array}\right.
$$

and the solution is

$$
\left\{\begin{array}{l}
A D=15, \\
A E=18 .
\end{array}\right.
$$

Thus, point D is the midpoint of the hypotenuse $A C$ of Rt $\triangle A E C$, and

$$
D E=\frac{1}{2} A C=15
$$

Draw line $D F$. Since point F is on the

circle with $D E$ as its diameter, $\angle D F E=90^{\circ}$, we have

$$
A F=\frac{1}{2} A E=9 .
$$

Since four points G, F, E and D are concyclic, and four points D, E, B and C are concyclic too, we get

$$
\angle A F G=\angle A D E=\angle A B C
$$

Thus $G F / / C B$. Extend line $A H$ to intersect $B C$ at point P, then

$$
\begin{equation*}
\frac{A K}{A P}=\frac{A F}{A B} \tag{2}
\end{equation*}
$$

Since H is the orthocenter of $\triangle A B C, A P \perp B C$. From $B A=B C$ we have

$$
A P=C E=24
$$

Due to (2), we get

$$
A K=\frac{A F \cdot A P}{A B}=\frac{9 \times 24}{25}=8.64
$$

H3 Solution © Munson

To solve parts (a), (b), and (c) of this example we can use the same fixed and nondeforming, disk-shaped control volume illustrated in Fig. 5.4. As indicated in Fig. E5.18a, the only axial torque considered is the one resisting motion, $T_{\text {shaft }}$.
(a) When the sprinkler head is held stationary as specified in part (a) of this example problem, the velocities of the fluid entering and leaving the control volume are shown in Fig. E5.18b. Equation 5.46 applies to the contents of this control volume. Thus,

$$
\begin{equation*}
T_{\text {shaft }}=-r_{2} V_{e 2} \dot{m} \tag{1}
\end{equation*}
$$

Since the control volume is fixed and nondeforming and the flow exiting from each nozzle is tangential,

$$
V_{\theta 2}=V_{2}
$$

Equations 1 and 2 give

$$
\begin{equation*}
T_{\text {staft }}=-r_{2} V_{2} \dot{m} \tag{3}
\end{equation*}
$$

In Example 5.7, we ascertained that $V_{2}=16.7 \mathrm{~m} / \mathrm{s}$. Thus, from Eq. 3 with

$$
\begin{aligned}
\dot{m} & =Q_{\rho}=\frac{(1000 \mathrm{ml} / \mathrm{s})\left(10^{-3} \mathrm{~m}^{3} / \text { liter }\right)\left(999 \mathrm{~kg} / \mathrm{m}^{3}\right)}{(1000 \mathrm{ml} / \text { liter })} \\
& =0.999 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

we obtain
$T_{\text {stan }}=-\frac{(200 \mathrm{~mm})(16.7 \mathrm{~m} / \mathrm{s})(0.999 \mathrm{~kg} / \mathrm{s})\left[1(\mathrm{~N} / \mathrm{kg}) /\left(\mathrm{m} / \mathrm{s}^{2}\right)\right]}{(1000 \mathrm{~mm} / \mathrm{m})}$
or
a. wa $T_{\text {stan }}-3.34 \mathrm{~N} \cdot \mathrm{~m}$
(b) When the sprinkler is rotating at a constant speed of 500 rpm , the flow field in the control volume is unsteady but cyclical. Thus, the flow field is steady in the mean. The velocities of the fluw entering and leaving the suntuol volume tue as indicateal in Fig. E5.18c. The absolute velocity of the fluid leaving each norric, V_{2} is from Eq. 5.43,

$$
\begin{equation*}
V_{2}=W_{2}-U_{2} \tag{4}
\end{equation*}
$$

where

$$
W_{2}=16.7 \mathrm{~m} / \mathrm{s}
$$

as determined in Example 5.7. The speed of the nozzle, U_{2}, is obtained from

$$
\begin{equation*}
U_{2}=r_{2} \omega \tag{5}
\end{equation*}
$$

Application of the axial component of the moment-of-momentum equation (Eq. 5.46) leads again to Eq. 3. From Eqs. 4 and 5 .

$$
\begin{aligned}
V_{2} & =16.7 \mathrm{~m} / \mathrm{s}-r_{2} \omega \\
& =16.7 \mathrm{~m} / \mathrm{s}-\frac{(200 \mathrm{~mm})(500 \mathrm{rev} / \mathrm{min})(2 \pi \mathrm{rad} / \mathrm{rev})}{(1000 \mathrm{~mm} / \mathrm{m})(60 \mathrm{~s} / \mathrm{min})}
\end{aligned}
$$

or

$$
V_{2}=16.7 \mathrm{~m} / \mathrm{s}-10.5 \mathrm{~m} / \mathrm{s}=6.2 \mathrm{~m} / \mathrm{s}
$$

Thus, using Eq. 3, with in $=0.999 \mathrm{~kg} / \mathrm{s}$ (as calculated previously), we get

$$
T_{\mathrm{sha}}=-\frac{(200 \mathrm{~mm})(6.2 \mathrm{~m} / \mathrm{s}) 0.999 \mathrm{~kg} / \mathrm{s}\left[1(\mathrm{~N} / \mathrm{kg}) /\left(\mathrm{m} / \mathrm{s}^{2}\right)\right]}{(1000 \mathrm{~mm} / \mathrm{m})}
$$

or

$$
T_{\text {stan }}=-1.24 \mathrm{~N} \cdot \mathrm{~m}
$$

(Ans)
(c) When no resisting torque is applied to the rotating sprinkler head, a maximum constant speed of rotation will occur as demonstrated below. Application of Eqs. 3, 4, and 5 to the contents of the control volume results in

$$
\begin{equation*}
T_{\text {staht }}=-r_{2}\left(W_{2}-r_{2} \omega\right) \dot{m} \tag{6}
\end{equation*}
$$

For no resisting torque, Eq. 6 yields

$$
0=-r_{2}\left(W_{2}-r_{2} a\right) \dot{m}
$$

Thus,

$$
\begin{equation*}
\omega=\frac{W_{2}}{r_{2}} \tag{7}
\end{equation*}
$$

In Example 5.4, we learned that the relative velocity of the fluid leaving each nozzle, W_{2}, is the same regardless of the speed of rotation of the sprinkler head, ω, as long as the mass flowrate of the fluid, \vec{m}, remains constant. Thus, by using Eq 7 we obtain

$$
\omega=\frac{W_{2}}{r_{2}}=\frac{(16.7 \mathrm{~m} / \mathrm{s})(1000 \mathrm{~mm} / \mathrm{m})}{(200 \mathrm{~mm})}=83.5 \mathrm{rad} / \mathrm{s}
$$

or

$$
\omega=\frac{(83.5 \mathrm{rad} / \mathrm{s})(60 \mathrm{~s} / \mathrm{min})}{2 \pi \mathrm{rad} / \mathrm{rev}}=797 \mathrm{rpm}
$$

(Ans)

H4 Solution © Chandra

Solution (Fig. 3.9):

Height of instrument at $A, \quad h_{i}=1.6 \mathrm{~m}$
Height of target at $B, \quad h_{S}=5.5 \mathrm{~m}$
Correction for eye and object to the angle α^{\prime} observed from A to B

$$
\begin{aligned}
\varepsilon_{A} & =\frac{h_{s}-h_{i}}{d} \cdot 206265 \text { seconds } \\
& =\frac{5.5-1.6}{4996.8} \times 206265 \text { seconds } \\
& =2^{\prime} 41^{\prime \prime}
\end{aligned}
$$

Similarly, the correction for eye and object to the angle β^{\prime} observed from B to A

$$
\varepsilon_{B}=\frac{2.5-1.5}{4996.8} \times 206265 \text { seconds }=41.3^{\prime \prime}
$$

Length of arc at mean sea level subtending an angle of $1^{\prime \prime}$ at the centre of earth

$$
\begin{aligned}
& =\frac{R \times 1^{\prime \prime}}{206265} \times 1000 \\
& =\frac{6366.2 \times 1^{\prime \prime}}{206265} \times 1000=30.86 \mathrm{~m}
\end{aligned}
$$

Therefore angle θ subtended at the centre of earth by $A B$

Refraction

$$
\begin{aligned}
& =\frac{4996.8}{30.86} \\
\theta & =2^{\prime} 41.9^{\prime \prime} \\
v & =K \theta \\
& =0.071 \times 2^{\prime} 41.9^{\prime \prime}=11.5^{\prime \prime}
\end{aligned}
$$

Therefore correction for curvature and refraction

$$
\theta / 2-v=\frac{2^{\prime} 41.5^{\prime \prime}}{2}-11.5^{\prime \prime}=1^{\prime} 9.5^{\prime \prime}
$$

Corrected angle of elevation for eye and object

$$
\begin{aligned}
\alpha & =\alpha^{\prime}-\varepsilon_{A} \\
& =1^{\circ} 15^{\prime} 32^{\prime \prime}-2^{\prime} 41^{\prime \prime}=1^{\circ} 12^{\prime} 51^{\prime \prime}
\end{aligned}
$$

Corrected angle of elevation for curvature and refraction

$$
\begin{aligned}
\alpha+\theta / 2-v & =1^{\circ} 12^{\prime} 51^{\prime \prime}+1^{\prime} 9.5^{\prime \prime} \\
& =1^{\circ} 14^{\prime} 0.5^{\prime \prime}
\end{aligned}
$$

If b is the angle of depression at B corrected for eye and object then

$$
\begin{aligned}
\alpha+\theta / 2-v & =\beta-(\theta / 2-v) \\
\beta & =1^{\circ} 14^{\prime} 0.5^{\prime \prime}+1^{\prime} 9.5^{\prime \prime}=1^{\circ} 15^{\prime} 10^{\prime \prime}
\end{aligned}
$$

or
If the observed angle of depression is β^{\prime} then
or

$$
\begin{aligned}
\beta^{\prime} & -\beta^{\prime}-\varepsilon_{B} \\
\beta^{\prime} & =\beta+\varepsilon_{B} \\
& =1^{\circ} 15^{\prime} 10^{\prime \prime}+41.3^{\prime \prime}=1^{\circ} 15^{\prime} 51.3^{\prime \prime}
\end{aligned}
$$

Now the difference in level

$$
\begin{aligned}
\Delta h & =A C \tan \left(\frac{\alpha^{\prime}+\beta^{\prime}}{2}\right) \\
& =4996.8 \times \tan \left(\frac{1^{\circ} 12^{\prime} 51^{\prime \prime}+1^{\circ} 15^{\prime} 51.3^{\prime \prime}}{2}\right)
\end{aligned}
$$

$=108.1 \mathrm{~m}$

$$
\begin{aligned}
C_{N} & =\left[\frac{1}{\left(\frac{\sigma_{o}^{\prime}}{p_{a}}\right)}\right]^{0.5} \\
p_{a} & \approx 100 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Depth, z (m)	$\sigma_{0}^{\prime}\left(\mathbf{k N} / \mathrm{m}^{2}\right)$	C_{N}	$\mathbf{N s}_{\text {60 }}$	$\left(N_{1}\right)_{60}$
1.5	25.95	1.96	8	≈ 16
3.0	51.90	1.39	7	≈ 10
4.5	77.85	1.13	12	≈ 14
6.0	103.80	0.98	14	≈ 14
7.5	129.75	0.87	13	≈ 11

E1 Solution © Hoel

First, calculate the skid number using Equations 22.2 and 22.3,

$$
\begin{aligned}
& \text { SK }=100 *(\mathrm{~L} / \mathrm{N}) \\
& \mathrm{SK}=100 *(2400 / 5000)=48
\end{aligned}
$$

Therefore, the skid number would be 48 . Based on the skid number determined above and Figure 22.14, the pavement can be characterized as having a surface type (3), finetextured and gritty.

E2 Solution © Besavilla

Solution:

$\mathrm{Pp}=\frac{\mathrm{A} p \mathrm{~s}}{\mathrm{bd}}$	$\begin{aligned} & C=T \\ & .85 \mathrm{fc}[460(175)+(a-175)(140)]=3818750 \end{aligned}$
$P \mathrm{P}=\frac{2350}{(460)(785)}$	$0.85(48)[460(175)+(a-175)(140)]=3818750$
$\mathrm{Pp}=0.00651$	$3284400+5712 \mathrm{a} \cdot 999600=3818750^{\prime}$
	$\mathrm{a}=268.55 \mathrm{~mm} .$ $C_{1}=T$
$\mathrm{fp}_{\mathrm{s}}=\mathrm{fpu}\left[1 \cdot \frac{0.5 \mathrm{Pp} \mathrm{fpu}}{\mathrm{fc}}\right]$	
$f p_{s}=1860\left[1 \cdot \frac{0.5(.00651)(1860)}{48}\right]$	$0.85 \mathrm{fc}^{\prime}(460-140)(175)=\mathrm{Ap} \mathrm{fps}$
	0.85 (48) (320) (175) = Ap f (1625)
$\mathrm{fp}_{\mathrm{s}}=1625 \mathrm{MPa}$.	AD $\mathrm{f}=1406 \mathrm{~mm}^{2}$
$T=A p_{s} f p_{s}$	Apf + Apw $=$ Aps
$T=2350$ (1625)	$A P_{w}=2350-1406$
$T=3818750$	$A p_{w}=944 \mathrm{~mm}^{2}$.

$$
\begin{array}{ll}
& M_{1}=\varnothing T_{1}\left(d-\frac{t}{2}\right) \\
M_{1}=0.90 \text { Apf fps }\left(d \cdot \frac{t}{2}\right) \\
M_{1}=0.90(1406)(1625)\left(785 \cdot \frac{175}{2}\right) \\
P_{p_{w}}=\frac{P_{P_{w}}}{b_{w} d} & M_{1}=1434 \times 10^{6} \\
P_{p_{w}}=\frac{944}{140(785)} & M_{2}=\varnothing T_{2}\left(d \cdot \frac{a}{2}\right) \\
P_{p_{w}}=0.00859 & M_{2}=0.90 \text { Apw fpw }\left(d-\frac{a}{2}\right) \\
W_{p w}=\frac{w_{p w} f_{p s}}{f c^{\prime}} & M_{2}=0.90(944)(1625)\left(785-\frac{268.55}{2}\right) \\
W_{p w}=\frac{0.00859(1625)}{48} & M_{2}=898 \times 10^{6} \\
W_{p w}=0.29<0.30 & \\
M u=M_{1}+M_{2} & \\
M u=(1434+898) \times 10^{6} & \\
M u=2332 \times 10^{6} \text { (ultimate moment capacity) }
\end{array}
$$

E3 Solution © Das

Eq. (13.14): $U=\pi D_{s} Z \sigma_{t}^{\prime} \tan \phi_{p s}^{\prime}$
$D_{s}=1 \mathrm{~m} ; Z=9 \mathrm{~m}$
$U=(\pi)(1)(9)(600)(\tan 20)=6174.6 \mathrm{kN}$
Eq. (13.17): $U=\frac{c_{w} N_{c}}{\mathrm{FS}} \frac{\pi}{4}\left(D_{b}^{2}-D_{s}^{2}\right)$
$\mathrm{FS}=\frac{\left(c_{\mathrm{u}} N_{c}\right)\left(\frac{\pi}{4}\right)\left(D_{b}-D_{s}^{2}\right)}{U-D}$
$4=\frac{(150)(614)\left(\frac{\pi}{4}\right)\left(D_{b}^{2}-1^{2}\right)}{6174.6-1500}=\frac{723.35\left(D_{b}^{2}-1\right)}{4674.6}$
or $25.61+1=D_{b}^{2}$

$$
D_{b}=5.16 \mathrm{~m}
$$

$$
\text { of } 25.85=D_{b}^{2}-1
$$

$$
D_{b}=5.2 \mathrm{~m}
$$

E4 Solution © Hibbeler
Joint C :

$$
\begin{aligned}
& \sum F_{t}=0 ; \quad F_{C D} \sin 60^{\circ}-2=0 \quad F_{C D}=2.309 \mathrm{kN}(\mathrm{~T}) \\
& \sum F_{x}=0 ; \quad 2.309 \cos 60^{\circ}-F_{B C}-0 \\
& F_{B C}=1.154 \mathrm{kN}(\mathrm{C})=1.15 \mathrm{kN}(\mathrm{C})
\end{aligned}
$$

Ans.
Joint D : Since $F_{C D}, F_{D E}$ and $F_{D F}$ lie within the same plane and $F_{D E}$ is out of this plane, then $F_{D E}=0$.

$$
\sum F_{x}=0 ; \quad F_{D F}\left(\frac{1}{\sqrt{13}}\right)-2.309 \cos 60^{\circ}=0
$$

$$
F_{D F}=4.16 \mathrm{kN}(\mathrm{C})
$$

Ans.
Joint R :

$$
\begin{array}{ll}
\sum F_{t}=0 ; & F_{B E}\left(\frac{1.732}{\sqrt{13}}\right)-2=0 \\
& F_{B E}=4.16 \mathrm{kN}(\mathrm{~T})
\end{array}
$$

Ans.

E5 Solution: © Wells
417. From the numbers given it is clear that the number chosen cannot start with a 0 . The number of allowable pandigital numbers is therefore the total number, including initial zero, less the number starting with a zero: it is $10!-9!=9 \times 9!$

There are $9,000,000,000$ numbers in the range, so the probability is $(9 \times 9!) /\left(9 \times 10^{9}\right)=362,880 / 1,000,000,000=0.00036288$, or less than 1 in 2500.

